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Abstract— The paper introduces a new air flow analysis
approach based on Particle Tracking Velocimetry (PTV). One
of the special features of the proposed method is that after
the tracer particles are detected, matching and tracing are
conducted jointly. To this end, we introduce an interpretation
module based on a directed hypergraph for 3D curve recon-
struction. At first the 2D inter-frame locations are localised
and used for the extraction and calculation of 3D keypoints.
Through 3D keypoints which are evaluated in several steps
by the hypergraph together with the time information, reverse
curve matching for path selection can be reconstructed and the
resulting trajectories visualized.

In contrast to the preceding work, our approach describes
the measuring data by 3D trajectories directly instead of
first estimating 2D trajectories and then matching them to
3D trajectories. Even with complicated trajectories, a higher
precision can be achieved. A certain independence of the
reflections and lighting conditions is reached by interpretation.
Moreover, the path of particles can also be reconstructed with
the minimum number of 3D keypoints under consideration of
path energy minimization.

I. INTRODUCTION

According to a Dow Jones Newswires prediction, the

number of aircraft built by Airbus will double by 2026. The

number of passenger aircraft worldwide will approximately

be 35,000. Passenger comfort plays an increasingly important

role for the marketing of modern aircraft. Therefore, a

computer-aided system which evaluates the measurements

and visualizes the air-streams inside the cabin would be

enormously helpful. The resulting system could assist the

developers not only with the prototypes, but also in the

assembly of the aircrafts to be modified.

Over the years, several measuring technologies have been

discovered. One of the most well-known is based on the

use of anemometers which are distributed inside the aircraft

[1][2]. For a realistic air-flow model, several anemometers

should be placed and calibrated. Moreover, only one di-

mension of the air-flow is measured and afterwards all data

must be merged. As a result, the procedure involves a lot of

manpower and time and is cost-intensive.

Furthermore, there are three general categories of methods

which measure the velocity of air-flow with the help of

tracer particles. Particle Image Velocimetry (PIV) uses a

setup consisting of cameras and a laser scanner [3]. As

particles pass through the laser illuminated plane, two images

are taken within a short period of time. On these images, a

cross correlation of image regions is performed in order to

obtain the direction and velocity of the flow. This approach

is limited by the area which can be illuminated by the laser

as well as the acquisition and transfer rate of the cameras.

The main difference between PIV and Hot-wire anemometer

respectively Laser Doppler velocimetry techniques is that

PIV produces two-dimensional vector fields [4].

The principle idea behind Particle Streak Tracking (PST)

is to control the scene illumination through a shutter system

[5]. It generates a train of pulses during which the camera is

exposed to the reflections of the tracer particles in the scene.

For an application of PST for 3D velocity measurement of

flows on a single plane see [6]. The PST methods support

only a low number of particles. Therefore the resulting

information density is rather low. This is a serious handicap

for the measurement of turbulent air-flow.

Particle Tracking Velocimetry (PTV) methods identify sin-

gle particles and track them from frame to frame [7][8]. This

makes PTV more suitable for experiments with a low number

of particles. The lower number of particles permit depth

reconstruction for each particle, provided correspondence can

be established. The disadvantages of the methods that deliver

a two-dimensional vector field are significant. One of the

velocity components (depth direction) is disregarded, some

particles and turbulences will not be sufficiently recognised

or be totally absent. In other words, the resulting visualiza-

tion is neither complete nor accurate. Many of the above

methods need many hours or even days for the evaluation of

measurement data and the visualization of air-flows.

In this paper, we propose a new approach for the evalua-

tion of measurement data and the visualization of air-flows

inside the aircraft cabin based on PTV. The setup consists of

two synchronised cameras with long exposure time, similar

to the setup described in [9] and illustrated in Fig. 1. The

helium-filled soap bubbles that are injected through the air-

intakes are detected via the stereo camera system. Moreover,

the results for the soap bubbles are traced. First, the 2D inter-

frame locations of the bubbles are localised and then used

for the calculation and extraction of 3D keypoints. The sig-

nificant difference to the other methods is that the measuring

data are described directly by 3D trajectories instead of first

estimating the 2D trajectories and then matching them to

the 3D trajectories. A higher precision can be achieved even

with complicated trajectories. Our method uses reverse curve

matching for path selection, so a directed hypergraph is used

to evaluate a data-fit term on a curve obtained from a few

points resulting from an earlier step.

The hypergraph connects several 3D keypoints through

miscellaneous frames and contains time information. In the

next step the subpaths are combined. The accruing curves are
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Fig. 1. Cross section of a full-scale aircraft cabin, as used in our
experiments.

enhanced with a B-spline under consideration of energy, so-

called active contour models. An explanation of the theory

can be found in sections III to V.

Independence of the lighting conditions and reflections is

reached to a certain degree by interpretation. Moreover, the

path of the particles can also be reconstructed with the mini-

mum number of 3D keypoints under consideration of the path

energy minimization. Furthermore, the investigated volume

is considerably larger than in most other PTV applications.

The rest of this paper is structured as follows. In the

next sections we present the theoretical foundations of

our method. We describe the applied model, different pre-

processing steps, particle segmentation as well as curve

fitting and interpretation in sections II to V. Then, in section

VI, we describe the experimental setup. The implementation

and experimental results are described and discussed in

detail. Finally, we present our conclusion in section VII.

II. PREPROCESSING

The PTV system we developed is based on two synchro-

nised cameras with long exposure time. We used Zhang’s

calibration method [10] to obtain the camera parameters. As

a result of the single camera calibration, we got its intrinsic

parameters and the lens distortion. This was done separately

for both cameras. After that, we used the semi-automatic

calibration method to calibrate the stereo camera system.

The transformation matrix between the two cameras’ image

planes also needs to be determined. There is a wide array of

algorithms for this problem. To determine the rectification

matrices based on intrinsic and extrinsic camera parameters,

we implemented a procedure based on the work of Fusiello

et al. [11]. For the background removal an image I can be

seen as the sum of several components:

Fi, f (−→x ) = α·BGi, f (−→x )+Ni, f (−→x )+Ti, f (−→x ) (1)

or simplified

Fi = Ti +BGi +Ni (2)

where F denotes the image, Ti the foreground region con-

taining the traces, BGi the background and Ni the camera

noise at frame number i. In a static scene, BGi is affected

only by changes in illumination (and reflections). The main

part of BGi’s intensity can be removed by calculating a

median image over several frames. This template is then

subtracted from each input image. If an effort were made

to keep illumination constant, the remaining BGi intensity

would be low enough not to affect further segmentation steps

significantly, so that we could assume Fi = Ti + Ni, which

would simplify the following segmentation steps.

III. PARTICLE SEGMENTATION

Keypoint extraction is too computationally expensive to

apply to entire images. In order to obtain regions of interest

in which to search for keypoints, region-based segmentation

methods are useful.

Structuring element with hysteresis: Our first approach was

to test for four-connectivity by eroding the binary image

with a cross-shaped structuring element. Testing for four-

connectivity seemed like a suitable indicator for the presence

of traces, as it is unlikely to occur at random ( 1
32 if BGi has

been removed and Ni consists of white noise). The detection

rate is strongly dependent on the threshold used to obtain the

binary image. The gained regions were then used as starting

points to calculate the hysteresis on the original image in

order to complete the segmentation result.

Gradient Magnitude: Particle traces show a higher gra-

dient magnitude than the surrounding area. For an image

F(x,y), it is defined as presented below (Eq. 3).

|ΔF(x,y)| =
√

(
δF(x,y)

δx
)2 +(

δF(x,y)
δy

)2 (3)

This was exploited for segmentation by calculating the

gradient magnitude at each pixel and filtering through a

threshold Tr, which was set to a multiple n of the square

root of the variance V : Tr = n∗√V We found that changing

n does not change the detection yield significantly. While

the algorithm is suitably quick and gradient estimates can

be reused for detection, it breaks down on images with low

overall variance, leading to too many spurious regions of

interest.

MeanShift: If F is viewed as feature space, the MeanShift

algorithm can be used for segmentation. It operates by

following the density gradient with a kernel in the feature

space until a maximum has been reached. Pixels sharing

the same gradient maximum are assigned the value of that

maximum. All other pixels are assigned the density estimate

of the kernel centered at their position. If the kernel is chosen

to be suitably large and the noise is uniform and distributed,

the method is noise resistant.

Although by no means perfect, the MeanShift based

segmentation showed the best performance of all the tested

methods due to its suitability for varying classes of input

images.

IV. KEYPOINTS AND CURVE FITTING

First, we will exploit known image structure to obtain a

combinatorial representation as a starting point for further

analysis. In most points, the projected curve can be approx-

imated as in Eq. 4.
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Π(ta + t) = h◦−→ζ (ta + t) =

= Π′(s) =
−→
Π(ta)+

δΠ′

δ s
(0)·s+

1

2

δ 2ζ ′

δ s2
(0)·s2 +O(s3) (4)

where ζ is the space curve, h the de-homogenization, Π the

projected curve and Π′ its unit-speed version (parametrized

by arc length, since t is unobservable in practice).

Many methods use templates or intensity maxima for

detection and tracking. Going by intensity maxima is not an

option for data with long exposure times, because they do not

come with a well-defined time stamp; while one could envis-

age using some formulation of templates (usually contour-

based), it seemed more promising in terms of efficiency and

also for the sake of parsimony to continue thinking in terms

of thickened lines as opposed to regions.

A. KEYPOINTS

We introduce inter-frame locations of particles as a choice

of 2D keypoints, which can be detected on each view

individually; the 2D keypoints introduced above are then

combined to 3D keypoints, all the while respecting the

epipolar constraint. During our initial research, the idea of

searching directly for 3D keypoints was rejected because

searching, e.g. by masking regions of low contrast and then

applying Newton’s method to a response function in two

dimensions, is less costly in two dimensions than it is in

three and, more to the point, there is no essential advantage

in doing so (all available image information being essentially

two-dimensional because it stems from two 2D views, the

fundamental ambiguity of epipolar geometry is not resolved

by choosing another representation).

Subpixel measurements are introduced naturally in the

context of modern image analysis, but we would like to

point out that they are not directly responsible for increased

precision in our setup; that can be a by-effect, but the

main advantage of subpixel-methods is that they allow us to

deal more meaningfully with image information. The gain

in precision, which is smaller than the apparent radius ρ
of a tracer particle, is in practice smaller than calibration

errors which may be of the order of several pixels even in a

carefully calibrated setup.

Inter-frame locations are a very good candidate for anchor-

ing further steps because they are well-localized spatially

as well as temporally. Furthermore, they are detectable in

the image series. At the same time, they can be said to

have a standard appearance. The suspicion that inter-frame

locations can be detected with high accuracy was confirmed

by a test we carried out to investigate whether different

regions corresponding to background, endings and interiors

of thickened lines could be classified with a max-margin

linear classificator. As long as there was sufficient contrast,

the test turned out successful even within a non-adapted

feature space taken from another experiment.

The using of 2D keypoints as essential significant feature

has several advantages:

• They are very robust against the choice of exposure

time because the aspect, except for inevitable overlaps,

depends only on first order of arclength of the original

trajectory, and not on curvature or other aspects of its

shape.

• No matter how long the duration of the integration

of intra-frame information, these keypoints are always

equally well localized.

B. CURVE FITTING

For the software application, the choice fell on Harris’

and Stephens’ combined edge and corner detector over

other possibilities because of excellent localization and high

specificity (empirical, synthetic and actual image series), and

especially for its avoidance of multiple detections (which

would be toxic for the accuracy of measurements). This

detector is based on the gradient second-moment tensor, or

structure tensor, M, whose components are image derivatives

taken at an inner scale. It is defined as hs = det(M)−k ·tr(M)
and is a smooth function of location (and scale). When

calculated on each (background-subtracted) frame separately,

then corroborated between neighbouring frames, it indicates

probable intra-frame locations of particles. The fact that

it consistently showed better detection rates (lower false-

positive, lower false-negative) than an isophote-curvature

derived criterion and a detector based on critical points

of a certain function calculated on the time-series remains

somewhat surprising if one looks at the images.

Fig. 2. a) shows the performance of the MeanShift based mask generator
with kernel radii of 8. b) is an example of correctly detected inter-frame
locations, superposed onto a color-coded difference image.

Because it is a gradient-based detector, it is good at cap-

turing properties which do not change much with exposure

time – which are also related to first-order properties, i.e.

gradients – and we found that the choice of scales does not

have appreciable influence on the localization of the inter-

frame position, except in crowded areas. This is because any

wandering of the spatial maxima is offset by the requirement

that the feature be strong on both frames; distribution of the

gradient is locally symmetrical at the inter-frame location, as

predicted by the model. Fig. 2 shows an example.

V. INTERPRETATION AND CURVE

APPROXIMATION

As mentioned before, the epipolar constraint is a soft

constraint in the analysis of actual stereo image data, in the
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sense that some tolerance must be allowed for. This circum-

stance can even be leveraged to compensate imperfections

in calibration; indeed, for every matching which is made

between 2D keypoints, the image is subsequently locally

subjected to an affine warping, according to the average

offset normal to the epipolar lines, which approximates the

local effects of a re-calibration “as if the matchings were

confirmed”. In this way, intra-frame observations are not

lost even if calibration is less than perfect, and moderate

calibration errors do not result in non-detection, only in a

predictable error in the estimation of velocities.

Keypoints appearing on consecutive frames might belong

to the same particle. However, which 3D keypoints actually

correspond to particle locations is not known beforehand

because of the epipolar matching ambiguity, and which

continuations correspond to particle trajectories is not known

either. For that reason, an immediate interpretation is not

possible; it is necessary to take intra-frame observations into

account at this point. These are not timestamped and we

know only that they were accumulated between the instants

T · i and T · (i + 1), and furthermore we know the temporal

ordering because we regard a particle trace as a blurred line.

A. INDIRECT ANALYSIS

It is true that the 3D keypoints are already furnished with

a tangent direction for each view except when the motion is

exactly along an optical ray, which occurs almost never, and

which determines the direction in 3D except for a motion

inside an epipolar plane (i.e., each keypoint is a point in

R
4 ×RP

1 ×RP
1), which makes a preferred search direction

plausible. However, extrapolation, with moderate exposure

times, is not possible especially in the case where turbulent

motion is resolved and even so, it can only serve to reduce

the number of possible candidates.

In the following, we always assume that all interframe lo-

cations which are detectable with sufficient confidence have

been detected. While it might be possible to achieve good

results by suitably tracing out the trajectories from image

information, we think it preferable not to proceed in this

direct way but instead to generate hypotheses and filter them

according to how well they explain the frame content. This

circumvents most problems local path-following methods

have with ambiguous situations, especially in the presence

of occlusion.

The advantages over indirect analysis via hypotheses are

manifest:

• Thanks to a global, top-down view, results are much less

likely to be influenced by local fluctuations, noise and

difficult situations (i.e. crossings of traces) than local

approaches.

• There are enhanced opportunities for a true probabilistic

interpretation of the image series, as explained below.

• One can unambiguously fit simple curves to just a few

keypoints, which nevertheless remain accurate to a high

order if desired (B-splines lend themselves to it).

The third point above can be understood as an instance of

Occam’s Razor; moreover, it renders optimization over curve

spaces completely unnecessary.

Fig. 3. Directed graph of continuations.

All possible immediate continuations form an acyclic,

directed graph (Fig. 3). We extend it to a directed hypergraph

by considering all paths up to an arbitrary number of frames

f . f can be small, of the order of about 5 frames, and longer

range dependencies are disregarded, because the particle

motion can be described locally. By cutting hyperedges (e.g.

bottom-up, by removing edges first and enforcing transitivity

under these constraints), one can partition the hypergraph of

continuations into non-branching segments. These partitions

are possible explanations, or interpretations, of the image

evidence g and should be assigned a probability.

p(β |g) =
p(g|β )p(β )

p(g)
(5)

An application of the Bayes theorem: in Eq. 5, β repre-

sents the curve parameters and g the image evidence. The

prior distribution p(β ) can be chosen on physical grounds;

for example, one should favor interpretations which do not

require excessive kinetic energy to realize. p(β |g) would be

read as the probability of a single trajectory being supported

by the image evidence; the probability of the whole hy-

pergraph partitioning depends on the individual trajectories’

probabilities, which are independent except for the interdic-

tion of crossings and for the handling of subchains.
In our implementation of the framework, p(g|β ) is re-

placed by any of a set of criteria for good fit, ideally a

monotonically increasing function of the actual probability,

while the hypergraph partitioning itself is carried out by a

greedy algorithm, which orders the possible trajectories by

their score and discards all but the best one in ambiguous

situations (proceeding recursively from longer chains to sub-

chains). p(g) is irrelevant, because we are mostly interested

in relative probabilities; A unified way of determining a

threshold for any of the scores so as to reject bad explana-

tions (in case no path is viable) would be a topic for further

research.
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B. CURVE APPROXIMATION

The problem of interpreting the images is thus reduced

from a problem properly involving an integration over con-

tinuous probability distributions to the purely combinatorial

question of finding the chains of keypoints which correspond

to actual particle traces, reducing the search space to a real-

istic size by arguing that all sensible curves which contribute

most to the probability of a path look about the same and

can be reduced to a point estimate.

Each path candidate (chain) from the hypergraph is con-

verted to a smooth trajectory candidate by means of B-

splines. As alluded to above, B-splines play a simplification

role. On the one hand, a detail which cannot be resolved

when measuring is not spuriously resolved in the descrip-

tion (since B-spline spaces with few knots do not allow

for it), and overfitting does not occur; on the other hand,

they approximate data well (the approximation of a smooth

function is accurate to a high order). Note that B-splines are

not suited for extrapolation. This is not a disadvantage in our

application.

VI. APPLICATION DEVELOPMENT AND

EVALUATION

A. REAL EXPERIMENTAL SETUP

Frames {Fi, f } captured by camera number i at frame

number f ∈ {0, ..., fmax} are images obtained by the cameras

sensors integrating from f
f ramerate [s] to f

f ramerate − gap[s]
along the time axis. The gap during which the sensor is

not exposed should be as short as possible; it is always

disregarded in the remainder of the text. In our setup, the

camera positions are fixed with respect to an immobile scene.

The backgrounds overall brightness may vary because of

oscillations in lighting intensity (indeed, fluorescent lamps

might serve as light sources) which flicker at a frequency

usually out of tune with the imaging system. This should not

throw off our system, and indeed in the experiments it did

not, even without more sophisticated background subtraction.

B. IMPLEMENTATION

In order to evaluate the system, a application was pro-

grammed in C++, using data structures and algorithms from

the VIGRA library for image processing. Aside from an

implementation of the detection and tracking algorithm,

a GUI was built using the QT library which contains a

visualization widget based on the VTK library. The ap-

plication can visualize detected particle trajectories and a

model of the experimental environment in 3D. The overall

structure of the application can be seen in Fig. 4. Each

feature is implemented as a separate widget. The detection

and rectification steps are assigned their own threads, in

order to keep the GUI operational while they are processing

images. While the system can work on wholly rectified

images, as indicated in Fig. 4, it is also able to rectify (and

free from distortion) single points. Considering that neither

rectification nor freedom from distortion are necessary for

the particle segmentation and keypoint extraction, this yields

a considerable performance gain. Rectification is, however,

Fig. 4. Illustration of the implementation of the system. Data is denoted
by parallelograms, and processing components by rectangles.

crucial for an efficient correspondence search as it facilitates

the search for correspondences on the scanlines of image

pairs. The application is equipped with a widget to allow the

user to visually evaluate the quality of the rectification (and

in extension of the stereo calibration).

Our PTV system calculates the positions of the particle

trajectories relative to one of the cameras, and not in the

world coordinate system. As knowledge of the latter position

is required for a meaningful interpretation of the measure-

ments, a widget is provided to assist the user in obtaining

the necessary transformation between the two. This is done

by calculating the absolute orientation between two sets of

points from either system. The user is required to manually

establish the correspondences.

C. EXPERIMENTAL RESULTS

The implemented application comprises temporal informa-

tion and the reconstructed 3D particle trajectories. In spite

of the foundations described in V the temporal information

can be determined through the synchronized cameras and

particle traces (blurred lines).

Fig. 5. Vizualization of air-flow velocity with numerical indicators placed
directly on the reconstructed 3D trajectories.

To compute the velocity of single particles we use two

different algorithms, the above-mentioned physical properties

or the first derivative of the resulting curvature. To assist

the developers of air conditioning systems, we use different

means for the vizualization of the velocity of the particles.

For the visualization of single particles the direct numerical

indicator (shown in Fig. 5) can be used. For a large number

of particles, the color-coded visualization of the velocities

is advantageous. Fig. 6 shows the color and hue coded
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trajectories of the particles; the slowest particles are green,

the fastest are red (color and hue coded).

Fig. 6. Color and hue coded velocities of reconstructed 3D trajectories.
The slowest particles are green, the fastest are red.

Exact evaluation of fluid experiments needs ground truth,

which is not always easily obtainable: however, for vali-

dation, one can resort to synthetic images, employing ray

tracing in order to use the observational model as a generative

model. Experimental results are encouraging: the detection

Fig. 7. Trajectory accurately reconstructed from synthetic image series.

process, when run on a synthetic image series showing a

portion of a circular motion, reports only two candidates for

motion after hyperedge selection, one corresponding closely

to the true motion (with very low average deviation of

ca. 1%), see Fig. 7. The system was also subjected to a

Fig. 8. Detected particle trajectories shown in a model of the environment.

series of tests in an industrial environment for which prior

measurements with a different system were known. As it

was not feasible to obtain the ground truth, it is impossible

to calculate an error. However, the velocity distribution and

overall flow orientation matched expectations. The measure-

ment result of one of the test series is shown in Fig. 8. An

image series of 1000 frames from each camera takes ca.

1500 s on a 1.6 GHz computer. The system scales linearly

with the number of frames.

VII. CONCLUSION

This work demonstrated that depth reconstruction of

sparse flow information is practical using a stereo camera

setup. Furthermore, tracking of individual particles can be

done by generating a graph of possible paths and matching

generated curves.

To sum up, the direct description of the measuring data

by 3D trajectories instead of first estimating the 2D trajec-

tories and matching them to 3D trajectories is revealed as

advantageous. To the best of our knowledge this is the first

approach to develop a depth recovering particle velocimetry

system, which can operate under fairly broad conditions,

such as requiring only the use of a stereo camera setup

and a low sampling frequency. A higher precision can also

be achieved with complicated trajectories. The presented

system is capable of making essentially one-dimensional

measurements of a fully 3 + 1 - dimensional spatio-temporal

phenomenon. The fact that these measurements are subject

to a number of uncertain factors is known and noted; the

uncertainty, as presented in the main text, can be estimated

to a certain extent and that information is available for every

individual measurement.
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